Correction EXERCICE I. SUPER HÉROS EN DANGER ...24 (I) :4 (6 points)

1. Mouvement ascensionnel de Rocketeer

1.1.	II I	A v		
	Moitié	• Phase 1: $\overrightarrow{a_G} = \frac{\Delta V}{\Delta t}$ la vitesse verticale vers le haut passe de 0 à une		
	des pts si	valeur v ₁ . Le vecteur $\Delta \vec{v} = \overrightarrow{v_1} - \overrightarrow{0} = \overrightarrow{v_1}$ est donc vertical dirigé vers le		
	non	 haut, ainsi le vecteur accélération \$\overline{a_1}\$ est vertical dirigé vers le haut. Phase 2 : le mouvement étant rectiligne uniforme : 		
	justifié			
404	'	1 ^{ière} loi de Newton ou $\overrightarrow{a_G} = \frac{\overrightarrow{dv}}{dt} = \overrightarrow{0}$: le vecteur accélération $\overrightarrow{a_2}$ est nul.		
1.2.1.		Le poids \overrightarrow{P} du système agit également.		
1.2.2.	- 1	Pour que le décollage soit possible, il faut que la valeur de la force de poussée soit supérieure à celle du poids : F > P		
		Or P = m_R . g		
		=120 × 10 = 1200 N		
		= 1200 N Donc F>1200N, la proposition C) est donc la seule possible.		
		(on peut aussi appliquer la 2 ^{ième} loi de Newton)		
400				
1.2.3.		D'après l'énoncé la force de poussée est égale au produit du débit massique de gaz éjecté par la vitesse d'éjection de ces gaz :		
	1	Soit: $F = D_f \cdot V_f = \frac{m_f}{\Delta t} \cdot V_f$		
	-	—- ₁		
	- 1	on en déduit : $m_f = \frac{F.\Delta t_1}{V_f}$ soit $mf = \frac{1600 \times 3.0}{2.0.10^3} = 2.4 \text{ kg}$		
		I /II si non justifié		
1.2.4.	1	 En appliquant la seconde loi de Newton au système M, dans un référentiel terrestre considéré galiléen, la masse du système étant considérée comme constante : 		
		$\Sigma \overrightarrow{F_{\text{ext}}} = m. \frac{1}{dt} = m. \overrightarrow{a_{\text{G}}}$		
	1	d'où : $\overrightarrow{P} + \overrightarrow{F} = m_R \cdot \overrightarrow{a_G}$		
		En projetant sur un axe vertical Oy dirigé vers le haut :		
		$P_y + F_y = m_R \cdot a_{Gy}$		
	'	soit: $-P+F=m_R$. a_{Gy}		
		$a_0 = \frac{-P + F}{-P} = \frac{-m_R \cdot g + F}{-P} $		
		$a_{Gy} = \frac{-P + F}{m_R} = \frac{-m_R \cdot g + F}{m_R} = -g + \frac{F}{m_R}$		
	1	$a_{Gy} = -10 + \frac{1600}{120} = 3 \text{ m.s}^{-2}$ (je propose de ne pas pénaliser le nb de CS inc		
		120		
		ici et accepter 3,3)		
	1	• $\vec{a} = \frac{d\vec{v}}{dt}$ on en déduit : $a_{Gy} = \frac{dV_y}{dt}$		
	- 1	Par intégration on obtient : $v_y(t) = a_{Gy}t + k$		
	1	Or à $t = 0$ $v_y(0) = 0$ donc $k = 0$		
	•	Soit : $v_y(t) = a_{Gy}t = 3t$ En fin de phase 1 : $t_1 = 3.0s$ $v_y(t_1) = v_1 = 3 \times 3.0 = 9 \text{m.s}^{-1}$. (accepter 10s)		

2. Problème technique

2.1.	D'après les données à t = o la vitesse est nulle : on écarte C et D.			
		Le mouvement de chute est vertical vers le bas, dans le repère choisi on a donc		
		v _y <0 : seule la courbe A convient.		
2.2.		 1^{ière} méthode : utilisation de la courbe A 		
		D'après le document : $v_y(t) = -10t$		
	П	Or $v_y = \frac{dy}{dt}$ par intégration : $y(t) = -5t^2 + k'$; or à $t = 0$ y = 80 donc k' = 80		
		D'où : $y(t) = -5t^2 + 80$		
		• Autre méthode : application de la $2^{i me}$ loi de Newton : $\vec{g} = \vec{a}$:		
		I pour vecteur a		
		I pour vecteurV		
		I pout y(t)		
2.3.		Batman doit arriver sur le lieu de décollage avant que Rocketeer ne touche le sol.		
	I	• La durée de chute de Rocketeer est telle que $0 = -5tc^2 + 80$ soit $t_c = \sqrt{\frac{80}{5}} =$		
		4s		
		 La distance à parcourir, d'après l'échelle est d = 1 x 9 km si 1cm correspond à 1km. 		
		 La vitesse moyenne minimale doit être v_{moy}=d/t_c = 9.10³/4,0=2.10³m.s⁻¹ 		
	_	• $v_{mov} = 2,25.3600 = 8.10^3 \text{km/h}$: la vitesse moyenne de la Batmobile doit		
		être énorme, il semble peu probable que Batman puisse arriver à		
		temps pour sauver son ami!		
		(Je propose de ne pas pénaliser le nb de CS inc dans cette Q car ce n'est pas dans ce que l'on veut évaluer : c'est plutôt un ordre de grandeur qui intéresse)		

EX	EXERCICE II : Composition d'un vin 36 I/4 9 points				
Question	Barème	Réponse			
1.1.	I	Pour $V < V_E$, le diiode I_2 versé est totalement consommé dès son ajout. La solution reste vert pâle.			
	I	Pour $V \ge V_E$, il n'y a plus de SO_2 dans le milieu réactionnel, le diiode ajouté devient en excès ; il colore la solution en violet foncé.			
	I	On repère l'équivalence par le changement de couleur de vert pâle à violet foncé.			
1.2	I	À l'équivalence, les réactifs sont introduits dans les proportions stœchiométriques de l'équation du dosage :			
		$I_{2(aq)} + SO_{2(aq)} + 2H_2O_{(l)} \rightarrow 2I_{-(aq)} + SO_4^{2-}_{-(aq)} + 4H_{-(aq)}$			
		Ainsi: $n_1(SO_2) = n_E(I_2)$			
	I	Soit $C_1.V_1 = C_2.V_E$			
	I	$C_1 = \frac{C_2 \cdot V_E}{V_1}$			
		$C_1 = \frac{1,00 \times 10^{-2} \times 6,28 \times 10^{-3}}{20,00 \times 10^{-3}} \approx 3,14 \times 10^{-3} \text{ mol.L}^{-1}.$			
	I	Concentration massique $C_{m,exp}$ en dioxyde de soufre :			
	T	$C_{\text{m,exp}} = C_1.M_{\text{SO2}}$			
	I	$C_{m,exp} = 3.14 \times 10^{-3} \times (32.1 + 2 \times 16.0) \approx 0.201 \text{ g.L}^{-1} = 201 \text{ mg.L}^{-1}$			
	I				
1.3		Incertitude relative : $\frac{\Delta C_{\text{mexp}}}{C_{\text{mexp}}} = \sqrt{\left(\frac{\Delta V_{\text{E}}}{V_{\text{E}}}\right)^2 + \left(\frac{\Delta C_2}{C_2}\right)^2}$			
	I	$\frac{\Delta C_{\text{mexp}}}{C_{\text{mexp}}} = \sqrt{\left(\frac{0.05}{6.28}\right)^2 + \left(\frac{0.01}{1.00}\right)^2}$			
		Donc : $\Delta C_{\text{mexp}} \approx 2.57 \times 10^{-3} \text{ g.L}^{-1}$. (accepter 2.6.10-3)			
		En arrondissant l'incertitude ΔC_{mexp} à la valeur			

	I	supérieure du dernier chiffre significatif de C _{mexp} on a :
	I	$C_{\text{mexp}} = (0.201 \pm 3 \times 10^{-3}) \text{ g.L}^{-1}.$
		Accepter 201,3±2,6 mg/L
		ou: $C_{\text{mexp}} - \Delta C_{\text{mexp}} < C_{\text{mexp}} + \Delta C_{\text{mexp}}$
		$0.198 \text{ g.L}^{-1} < C_{\text{mexp}} < 0.204 \text{ g.L}^{-1}$
		100 m = I 1 4 C
	I	198 mg.L ⁻¹ $<$ C _{mexp} $<$ 204 mg.L ⁻¹ =
		Accepter :198,7 <cmexp(mg l)<203,9<="" th=""></cmexp(mg>
1.4	I	<u>Doc. 1 Réglementation européenne :</u> « La concentration massique en dioxyde de soufre ne doit pas dépasser 210
	I	mg.L-1 dans un vin blanc ». Or, compte tenu de l'incertitude, la concentration massique du vin est au plus
		égale à 204 mg.L ⁻¹ .(203,9) Cette concentration est donc conforme à la réglementation européenne.
2.1.1		Formule semi-développée de la molécule d'acide tartrique :
	I	HO C CH CH OH OH
		La molécule possède 2 groupes hydroxyle -> OH et deux
	п	groupes carboxyle – COOH.
2.1.2	I	Le groupe hydroxyle se manifeste par une bande intense entre 2600 cm ⁻¹ et 3200 cm ⁻¹ suffisamment large pour englober la bande d'absorption des vibrations de O-H.
		Le groupe carbonyle présente une absorption à 1700 cm ⁻¹ .
2.1.3	II	L'acide tartrique est une molécule symétrique donc, les 2

		protons des 2 groupes hydroxyles sont équivalents : 1 pic
		Les 2 autres protons des 2 groupes carboxyles sont également équivalents : 1 pic
		De plus, les protons des groupes hydroxyles et carboxyles ne peuvent pas se coupler avec d'autres atomes d'H donc ils donneront chacun 1 singulet .
		1pic (singulet)pour les 2 H équivalents des 2 groupes
		С-Н
2.2.1	I	L'acide tartrique est caractérisé par deux pKa : $pKa(H_2A/HA^-) = 3.0$; $pKa(HA^-/A^2^-) = 4.4$. Son diagramme de prédominance présente donc trois domaines :
		H ₂ A prédomine Prédomine Prédomine
		3,0 4,4 7
		À pH = 7 , pH > pKa (HA-/A ²⁻) donc l'espèce prédominante dans le mélange est la forme A^{2-} .
	I	
2.2.2	I	
2.2.2		prédominante dans le mélange est la forme A ²⁻ . Dans ces conditions comme A ²⁻ prédomine, l'équation de la réaction entre l'acide tartrique et les ions HO- est celle qui conduit à la formation de ces ions A ²⁻ :
	I	prédominante dans le mélange est la forme A²⁻. Dans ces conditions comme A²⁻ prédomine, l'équation de la réaction entre l'acide tartrique et les ions HO⁻ est celle qui conduit à la formation de ces ions A²⁻ : H₂A + 2HO⁻ → A²⁻ + 2H₂O (2) Le dégazage permet d'éliminer le dioxyde de carbone dissous dans le vin (gaz qui participent à son acidité) afin de ne tenir compte que de l'acidité due essentiellement à
2.3.1	I	prédominante dans le mélange est la forme A²⁻. Dans ces conditions comme A²⁻ prédomine, l'équation de la réaction entre l'acide tartrique et les ions HO⁻ est celle qui conduit à la formation de ces ions A²⁻ : H₂A + 2HO⁻ → A²⁻ + 2H₂O (2) Le dégazage permet d'éliminer le dioxyde de carbone dissous dans le vin (gaz qui participent à son acidité) afin de ne tenir compte que de l'acidité due essentiellement à l'acide tartrique. (Doc 4.)
2.3.1	I	prédominante dans le mélange est la forme A²⁻. Dans ces conditions comme A²⁻ prédomine, l'équation de la réaction entre l'acide tartrique et les ions HO⁻ est celle qui conduit à la formation de ces ions A²⁻ : H₂A + 2HO⁻ → A²⁻ + 2H₂O (2) Le dégazage permet d'éliminer le dioxyde de carbone dissous dans le vin (gaz qui participent à son acidité) afin de ne tenir compte que de l'acidité due essentiellement à l'acide tartrique. (Doc 4.) n _{HO⁻} = C.V

		l'équation de la réaction (2) :
		$H_2A + 2HO \rightarrow A^{2-} + 2H_2O$ (2)
	I	Ainsi: $\frac{n_{H_2A}}{1} = \frac{n_{HO^-}}{2}$
		comme $m_{H_2A} = n_{H_2A}.M_{H_2A}$ alors $m_{H_2A} = \frac{n_{HO^-}}{2}.M_{H_2A}$
		$m_{H_2A} = \frac{1,55 \times 10^{-3}}{2} \times 150$
	I	soit $m_{H_2A} = 7.75 \times 10^{-4} \times 150 = 0.116 \text{ g}$ pour 20,0 mL de vin.
		Acidité totale du vin :
	п	Pour 1 L = 1000 mL de vin, la masse d'acide tartrique serait : $\frac{0,11625 \times 1000}{20,0}$ = 5,81 g.
		L'acidité totale du vin étudié est donc de 5,81 g.L ⁻¹
		(Accepter si ils ont utilisés 0,116 g dans le calcul de l'acidité du vin)
2.3.3	II	D'après la courbe de dosage, $pH_E \approx 8$. Donc d'après le Doc 5, l'indicateur coloré qui semble convenir est la phénolphtaléine car sa zone de virage contient le pH_E trouvé.
2.3.4		L'acide tartrique réagit avec les ions hydroxyde suivant l'équation de la réaction (2) :
		H ₂ A + 2HO ⁻ → A ²⁻ + 2H ₂ O
		On rappelle que seuls les ions participent à la conductivité d'une solution sans oublier les ions Na ⁺ de la solution de soude.
		En négligeant les effets de la dilution lors des ajouts de solution titrante :
	I	Avant l'équivalence : À chaque fois qu'une molécule H_2A est consommé par 2 ions HO^- , 2 ions spectateurs Na^+ sont ajoutés au milieu réactionnel et un ion A^{2-} se forme.

La solution devient un peu plus concentrée en ions, sa conductivité augmente très légèrement. **Au-delà de l'équivalence:** Il n'y a plus de molécules H₂A. La concentration en ion HO- et Na+ augmente après chaque ajout (et celle de A2- ne varie pas) donc la conductivité augmente fortement. Ι On obtient une droite de pente positive. Cependant, avant l'équivalence, l'augmentation de conductivité est due à Na⁺ et A²⁻ tandis qu'après l'équivalence, l'augmentation de conductivité est due à Na⁺ et HO⁻. Comme les ions OH- conduisent mieux le courant que les ions $A^{2-}(\lambda(HO^{-}) > \lambda(A^{2-}))$, la pente de la droite est encore plus élevée. Ceci permet de dire que c'est la courbe 2 qui correspond à notre titrage. Ι Ι

1.1		Les ondes lumineuses issues de F1 et F2 doivent avoir la même fréquence. (on ne demande pas figure d'interférence stable, donc le déphasage constant n'est pas attendu).
1.2		Frange brillante : interférences constructives si $\delta = k\lambda \qquad \text{avec k entier}$ Frange sombre : interférences destructives si $\delta = (2k+1)\frac{\lambda}{2} \qquad \text{avec k entier}$
1.3	1	(on peut enlever + si k non précisé entier) • $d_2 - d_1 = 0 = k\lambda$ avec $k = 0$ donc frange brillante • $d_2 - d_1 = 3,20 \ \mu\text{m} = k\lambda$ avec $k = 5$ donc frange brillante • $d_2 - d_1 = 2,24 \ \mu\text{m} = 7\frac{\lambda}{2}$ avec 7 entier et impair donc frange sombre
2.1		Pour une meilleure précision sur la mesure, il est préférable de mesurer la distance la plus grande possible.
2.2		on accepte une droite qui n'est pas prolongée jusqu'à l'origine dans cette question Si abs d'unité sur un axe, si inversion des coordonnées, si points non reliés : enlever + par manque Si 6i au lieu de i : l pour toute la question On peut aussi calculer le coefficient directeur de la courbe (facultatif) Le coefficient directeur est
2.3	i	L'interfrange i est proportionnel à la longueur d'onde λ . Ceci est vérifié puisque l'on obtient une droite passant par l'origine. On vérifie que $D/a = 5000$. La relation donnée $i = \lambda D/a$ est donc vérifiée.
2.4	i	Pour une plus grande précision de mesure, il faut que l'interfrange soit plus grand. Pour cela, on peut augmenter la distance D ou encore utiliser des fentes doubles séparées d'une distance a plus petite. (une seule réponse exigée)
2.5	!!	Pour une longueur d'onde de 0,50 μ m, on peut déterminer la valeur de l'interfrange graphiquement en utilisant la courbe précédente . On trouve vous $i=2,5\times10-3$ m = 2,5 mm . Ou à l'aide de l'équation $i=5000\times\lambda$ d'où $i=2,5\times10-3$ m = 2,5 mm.

2.6	+	On reprend le même montage que précédemment, mais on remplace la
2.0	+ + +	source F par la source monochromatique inconnue. On retire le filtre. Ainsi on obtient une figure d'interférences sur l'écran dans les mêmes conditions que la courbe établie précédemment. Il reste à mesurer le plus précisément possible l'interfrange i et de déterminer alors la longueur d'onde à l'aide de la courbe précédente $i = f(\lambda)$ ou à l'aide de l'équation de la droite $\lambda = \frac{i}{5000}$.